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Abstract— Cardiac output (CO) is a crucial indicator of cardiovascular function, traditionally measured with invasive techniques like 

thermodilution and pulse contour. These precise measures are technically challenging and non-continuous. The present work proposes a 

machine learning approach of non-invasive estimation of CO from photoplethysmogram (PPG) signals. The approach relies on low-pass 

filtering PPG signals and arterial pressure waveform reconstruction using a 1D Convolutional Neural Network (1D-CNN). Cardiac 

output is approximated from waveform features like systolic peaks and pulse pressure. The system also encompasses backflow detection 

and valve strength estimation to provide longer term physiological information. It was tested on the BIDMC dataset and demonstrates 

real-time usefulness, designed to improve patient safety and aid current hemodynamic monitoring. 

 

Index Terms— Cardiac output, photoplethysmogram (PPG), pulse contour analysis, non-invasive monitoring, arterial pressure 

waveform, machine learning, 1D convolutional neural network (1D-CNN), backflow detection, valve strength estimation, real-time 

biomedical signal processing. 

 

I. INTRODUCTION 

Cardiac output (CO) is one of the vital physiological 

parameters that reflect the heart’s ability to deliver 

oxygenated blood to the body. CO is the sum of stroke 

volume (SV)—amount of blood ejected from the left 

ventricle during a beat—and heart rate (HR) and is most 

commonly recorded in liters per minute. True and 

instantaneous measurement of cardiac output is of significant 

importance in most clinical settings like monitoring in 

intensive care, surgery, and treatment of cardiovascular 

diseases like heart failure, sepsis, and hypertension. 

Monitoring CO is also essential in the titration of drugs, 

resuscitation, and hemodynamic assessment of the patient. 

Some of the older techniques for measuring cardiac output 

include the use of the thermodilution technique via a 

SwanGanz catheter and the Fick principle, which are invasive 

and are used mainly in intensive care because they are 

complicated and have a high risk factor. While pulse contour 

analysis (PCA) is a semi-invasive technique by analysis of 

the arterial pressure waveform contour for stroke volume 

determination, it is invasive with catheterization and needs 

intermittent invasive reference calibration, limiting its use to 

non-critical settings, or continuous prolonged monitoring. 

The demand for ongoing, non-invasive and harmless 

cardiovascular monitoring has fueled the interest in 

alternative biosignals and machine learning. In them, 

photoplethysmogram (PPG) has gained a lot of attention 

since it is noninvasive, simple to record, and widespread in 

wearables. PPG signals are optical recordings of volumetric 

blood volume changes of blood within the microvascular bed 

of tissue and are rich in information regarding cardiac cycle 

dynamics. However, it is still challenging to estimate cardiac 

output directly from PPG due to the indirect nature of the 

signal and their vulnerability to noise and artifacts. 

Deep neural networks such as convolutional neural 

networks (CNNs) have been found to have broad learning 

capacities of complex mappings of input signals to 

physiological values in recent advances in machine learning. 

The networks, depending on temporal and morphological 

characteristics of PPG signals, can simulate arterial pressure 

waveforms and hence enable pulse contour analysis 

independently of invasive measurement. In this paper, a new 

non-invasive cardiac output estimation by machine 

learning-based pulse contour analysis of PPG waveforms is 

presented. The method includes collection of raw PPG data, 

preprocessing of signals by removing highfrequency noise 

with low-pass filtering, and reconstruction of waveform 

using a 1D Convolutional Neural Network as training data 

with labeled PPG–arterial pressure waveform pairs. The 

cardiac output is finally obtained from waveforms as 

extrapolated from mitral and pulse pressure signatures for 

heart rate and pulse pressure respectively. Detection of valve 

regurgitation patterns in blood flow through the dysrhythmic 

states, and aortic and functional mitral valve strengths, is also 

included as part of the system. 

The model is validated on publicly released BIDMC 

Congestive Heart Failure Database with synchronized PPG 

and arterial blood pressure data for training and testing 

supervised models. Real-time usage emulation is 

implemented with an Arduino-based PPG acquisition 

platform to demonstrate the applicability of real-time 
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monitoring. The designed solution is a non-invasive, 

adaptive, and interpretable continuous cardiac output 

monitoring solution of interest in clinical settings, home 

healthcare, and wearable health technology. 

II. MATERIALS AND METHODS 

A. Real-Time Signal Acquisition 

To validate the operation of the system in real-time, a 

hardware platform was developed using a fingertip pulse 

sensor connected to an Arduino Uno microcontroller. The 

pulse sensor detects volumetric changes in peripheral 

circulatory blood through optical principles. The onboard 

analogto-digital converter of the Arduino converts the PPG 

signal from analog to digital and sends it to a host computer 

via a serial link. Python and PySerial library were used to 

capture the data stream and process it in real-time. The setup 

simulates an actual setting in which PPG data can be obtained 

and processed continuously without invasive devices.[1],[7] 

B. Signal Preprocessing 

BIDMC and real-time PPG signals were preprocessed for 

quality and stability prior to analysis. A fourth-order 

Butterworth low-pass filter with a cutoff frequency of 4 Hz 

was applied to remove high-frequency noise, baseline drift, 

and motion artifacts [2]. This frequency boundary was 

chosen to preserve important cardiac frequency components 

and reject unwanted distortions. The filtering process 

resulted in a more smoothed PPG waveform wherein systolic 

peaks, dicrotic notches, and diastolic decay were easily 

identifiable. Filtered signals gave consistent inputs to peak 

detection and machine learning-based waveform estimation. 

C. Arterial Waveform Estimation Using 1D-CNN 

One-dimensional convolutional neural network (1D-CNN) 

was utilized to forecast the arterial pressure waveform from 

filtered PPG signals. Five-second segments of PPG were 

utilized as input and matching segments of ABP as output to 

train the model. The network included a number of 

convolutional layers with pooling and dense layers, enabling 

the extraction of temporal patterns and morphological 

characteristics in the signal [3],[4]. The model was trained 

using the mean squared error loss function in order to 

minimize the difference between true and predicted arterial 

waveforms. After training, the model was found to be able to 

reconstruct pressure waveforms that maintained key features 

such as systolic upstrokes, dicrotic notches, and diastolic 

runoff curves. 

D. Cardiac Output Estimation 

Cardiac output was derived from the reconstructed arterial 

waveform based on heart rate and assumed stroke volume. 

Heart rate was derived from the duration of two consecutive 

systolic peaks. Stroke volume was derived from the area 

under each systolic segment of a cardiac cycle in the 

predicted waveform. Cardiac output was derived as stroke 

volume times heart rate. These values were established 

against physiological norms such that the system outputs 

would lie between healthy clinical parameters, typically 4 

and 8 liters per minute for a healthy resting adult [1],[5],[13]. 

E. Backflow Detection and Valve Strength Estimation 

To assess for potential valvular disease, reconstructed 

arterial pressure tracings were inspected for signs of 

backflow patterns and waveform changes. Backflow was 

looked for by the presence of secondary pressure peaks in the 

diastolic phase of the cardiac cycle, which could be indicative 

of regurgitation through insufficiency of the mitral or aortic 

valves. Aortic valve function was approximated from 

amplitude and slope of systolic upstroke, and mitral valve 

function from decay pattern and turbulence in the diastolic 

phase. The recordings were beat-to-beat and allowed 

variability in valve function over time to be measured [6],[8]. 

F. Correlation Analysis and Clinical Interpretation 

Quantitative analysis was invoked in correlating extracted 

physiological parameters. In other words, valve strength and 

heart rate, and valve strength and volume of backflow were 

correlated. The magnitude and direction of correlations 

suggested information about the functional cardiac valve 

response with varying physiological states. A clinical 

interpretation table was extracted from the correlation 

coefficients determined, correlating each pattern with the 

possible underlying cardiac conditions. The integration of 

machine learning, physiology, and signal processing enables 

an interpretable and transparent model for cardiovascular 

monitoring in a non-invasive manner [9],[14],[15]. 

III. RESULTS AND DISCUSSIONS 

Hardware setup real-time PPG and pre-recorded 

PPG-ABP pairs from the BIDMC database were utilized in 

order to assess the system. Filtered through a 4 Hz low-pass 

filter, PPG signals produced better morphology with 

well-resolved systolic peaks and more gradient-like diastolic 

fall-off. Reconstruction of artery pressure waveform with 

very close shape and time to the original ABP was possible 

using the 1D Convolutional Neural Network (1D-CNN). 

Cardiac output (CO) was estimated by sampling peak 

systolic, pulse pressure computation, and area under curve 

measurement per beat. Calculated values of CO fell within 

physiological parameters of 4–8 L/min for patient samples 

collected at various time points and for real-time 

measurements. CO variations corresponded with changes in 

heart rate and with alterations in morphology of the 

waveform. 

Quantitatively and graphically, backflow detection was 

confirmed. Potentials showing a secondary peak in the 

diastolic phase were noted as likely regurgitation. They 

showed negative correlations with aortic and mitral valve 

strength parameters. 662 beats in a single real-time session 

showed potential backflow, and thus the clinical application 
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of the model was acceptable. Valve strength analysis also 

showed aortic valve to be more pointed and of larger upstroke 

size, while mitral valve was more beat-to-beat varying. 

 
Fig. 1. Filtered data 

 
Fig. 2. Peak detection 

 
Fig. 3. Estimation of arterial waveform 

 
Fig. 4. Backflow detection 

Correlation analysis also validated strong negative 

correlation with valve strength vs. backflow volume, along 

with heart rate with moderate negative correlation, pointing 

towards near-failure or fatigue in high frequency. 

Scatter plots and interpretation tables were employed to 

plot the dose-response curve for the cardiac health indicators 

against the physiological indicators. Results confirm the 

ability of the system not only to produce CO values but also 

to produce additional diagnostic data on valvular function 

and integrity of blood passage. 

 
Fig. 5. Valve strength Analysis 

Table I. Valve Strength vs Heart Metrics: Diagnostic Interpretation 

Metric Corr. Coeff. Interpretation Potential Pathology 

Aortic Strength vs HR 0.02 Aortic valve stable under varied HR. Normal 

Mitral Strength vs HR -0.04 Weakening under high HR; early fatigue. Risk of Mitral Valve Prolapse 

Aortic Strength vs Backflow 0.14 More backflow as aortic valve weakens. Possible Aortic In-sufficiency 

Mitral Strength vs Backflow 0.23 Indicates mitral regurgitation risk. Mitral Regurgitation 

Backflow vs HR 0.30 HR rise may compensate for backflow. Early Heart Failure / Stress 

 

IV. CONCLUSION 

This paper presents a completely non-invasive, machine 

learning-based method for cardiac output estimation from 

PPG signals through pulse contour analysis. Real-time 

beat-to-beat cardiac output is enabled through the application 

of a 1DCNN for arterial waveform reconstruction from 

band-pass filtered PCG without invasive calibration. Clinical 

usefulness is further augmented by backflow detection and 

valve strength estimation for the identification of early 

valvular dysfunction. Validated with publicly available 

clinical data sets and realtime sensor data, the system holds 

enormous potential for use in critical care, wearable health 

monitoring, and remote health deployment. There are plans 

to conduct clinical trials, multi-signal fusion (e.g., ECG + 

PPG), and optimization on embedded real-time platforms. 
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