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Abstract— Cardiac output (CO) is a crucial indicator of cardiovascular function, traditionally measured with invasive techniques like
thermodilution and pulse contour. These precise measures are technically challenging and non-continuous. The present work proposes a
machine learning approach of non-invasive estimation of CO from photoplethysmogram (PPG) signals. The approach relies on low-pass
filtering PPG signals and arterial pressure waveform reconstruction using a 1D Convolutional Neural Network (1D-CNN). Cardiac
output is approximated from waveform features like systolic peaks and pulse pressure. The system also encompasses backflow detection
and valve strength estimation to provide longer term physiological information. It was tested on the BIDMC dataset and demonstrates
real-time usefulness, designed to improve patient safety and aid current hemodynamic monitoring.

Index Terms— Cardiac output, photoplethysmogram (PPG), pulse contour analysis, non-invasive monitoring, arterial pressure
waveform, machine learning, 1D convolutional neural network (1D-CNN), backflow detection, valve strength estimation, real-time

biomedical signal processing.

I. INTRODUCTION

Cardiac output (CO) is one of the vital physiological
parameters that reflect the heart’s ability to deliver
oxygenated blood to the body. CO is the sum of stroke
volume (SV)—amount of blood ejected from the Ileft
ventricle during a beat—and heart rate (HR) and is most
commonly recorded in liters per minute. True and
instantaneous measurement of cardiac output is of significant
importance in most clinical settings like monitoring in
intensive care, surgery, and treatment of cardiovascular
diseases like heart failure, sepsis, and hypertension.
Monitoring CO is also essential in the titration of drugs,
resuscitation, and hemodynamic assessment of the patient.

Some of the older techniques for measuring cardiac output
include the use of the thermodilution technique via a
SwanGanz catheter and the Fick principle, which are invasive
and are used mainly in intensive care because they are
complicated and have a high risk factor. While pulse contour
analysis (PCA) is a semi-invasive technique by analysis of
the arterial pressure waveform contour for stroke volume
determination, it is invasive with catheterization and needs
intermittent invasive reference calibration, limiting its use to
non-critical settings, or continuous prolonged monitoring.

The demand for ongoing, non-invasive and harmless
cardiovascular monitoring has fueled the interest in
alternative biosignals and machine learning. In them,
photoplethysmogram (PPG) has gained a lot of attention
since it is noninvasive, simple to record, and widespread in
wearables. PPG signals are optical recordings of volumetric
blood volume changes of blood within the microvascular bed

of tissue and are rich in information regarding cardiac cycle
dynamics. However, it is still challenging to estimate cardiac
output directly from PPG due to the indirect nature of the
signal and their vulnerability to noise and artifacts.

Deep neural networks such as convolutional neural
networks (CNNs) have been found to have broad learning
capacities of complex mappings of input signals to
physiological values in recent advances in machine learning.
The networks, depending on temporal and morphological
characteristics of PPG signals, can simulate arterial pressure
waveforms and hence enable pulse contour analysis
independently of invasive measurement. In this paper, a new
non-invasive cardiac output estimation by machine
learning-based pulse contour analysis of PPG waveforms is
presented. The method includes collection of raw PPG data,
preprocessing of signals by removing highfrequency noise
with low-pass filtering, and reconstruction of waveform
using a 1D Convolutional Neural Network as training data
with labeled PPG-arterial pressure waveform pairs. The
cardiac output is finally obtained from waveforms as
extrapolated from mitral and pulse pressure signatures for
heart rate and pulse pressure respectively. Detection of valve
regurgitation patterns in blood flow through the dysrhythmic
states, and aortic and functional mitral valve strengths, is also
included as part of the system.

The model is validated on publicly released BIDMC
Congestive Heart Failure Database with synchronized PPG
and arterial blood pressure data for training and testing
supervised models. Real-time usage emulation is
implemented with an Arduino-based PPG acquisition
platform to demonstrate the applicability of real-time
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monitoring. The designed solution is a non-invasive,
adaptive, and interpretable continuous cardiac output
monitoring solution of interest in clinical settings, home
healthcare, and wearable health technology.

Il. MATERIALS AND METHODS

A. Real-Time Signal Acquisition

To validate the operation of the system in real-time, a
hardware platform was developed using a fingertip pulse
sensor connected to an Arduino Uno microcontroller. The
pulse sensor detects volumetric changes in peripheral
circulatory blood through optical principles. The onboard
analogto-digital converter of the Arduino converts the PPG
signal from analog to digital and sends it to a host computer
via a serial link. Python and PySerial library were used to
capture the data stream and process it in real-time. The setup
simulates an actual setting in which PPG data can be obtained
and processed continuously without invasive devices.[1],[7]

B. Signal Preprocessing

BIDMC and real-time PPG signals were preprocessed for
quality and stability prior to analysis. A fourth-order
Butterworth low-pass filter with a cutoff frequency of 4 Hz
was applied to remove high-frequency noise, baseline drift,
and motion artifacts [2]. This frequency boundary was
chosen to preserve important cardiac frequency components
and reject unwanted distortions. The filtering process
resulted in a more smoothed PPG waveform wherein systolic
peaks, dicrotic notches, and diastolic decay were easily
identifiable. Filtered signals gave consistent inputs to peak
detection and machine learning-based waveform estimation.

C. Arterial Waveform Estimation Using 1D-CNN

One-dimensional convolutional neural network (1D-CNN)
was utilized to forecast the arterial pressure waveform from
filtered PPG signals. Five-second segments of PPG were
utilized as input and matching segments of ABP as output to
train the model. The network included a number of
convolutional layers with pooling and dense layers, enabling
the extraction of temporal patterns and morphological
characteristics in the signal [3],[4]. The model was trained
using the mean squared error loss function in order to
minimize the difference between true and predicted arterial
waveforms. After training, the model was found to be able to
reconstruct pressure waveforms that maintained key features
such as systolic upstrokes, dicrotic notches, and diastolic
runoff curves.

D. Cardiac Output Estimation

Cardiac output was derived from the reconstructed arterial
waveform based on heart rate and assumed stroke volume.
Heart rate was derived from the duration of two consecutive
systolic peaks. Stroke volume was derived from the area
under each systolic segment of a cardiac cycle in the
predicted waveform. Cardiac output was derived as stroke

volume times heart rate. These values were established
against physiological norms such that the system outputs
would lie between healthy clinical parameters, typically 4
and 8 liters per minute for a healthy resting adult [1],[5],[13].

E. Backflow Detection and Valve Strength Estimation

To assess for potential valvular disease, reconstructed
arterial pressure tracings were inspected for signs of
backflow patterns and waveform changes. Backflow was
looked for by the presence of secondary pressure peaks in the
diastolic phase of the cardiac cycle, which could be indicative
of regurgitation through insufficiency of the mitral or aortic
valves. Aortic valve function was approximated from
amplitude and slope of systolic upstroke, and mitral valve
function from decay pattern and turbulence in the diastolic
phase. The recordings were beat-to-beat and allowed
variability in valve function over time to be measured [6],[8].

F. Correlation Analysis and Clinical Interpretation

Quantitative analysis was invoked in correlating extracted
physiological parameters. In other words, valve strength and
heart rate, and valve strength and volume of backflow were
correlated. The magnitude and direction of correlations
suggested information about the functional cardiac valve
response with varying physiological states. A clinical
interpretation table was extracted from the correlation
coefficients determined, correlating each pattern with the
possible underlying cardiac conditions. The integration of
machine learning, physiology, and signal processing enables
an interpretable and transparent model for cardiovascular
monitoring in a non-invasive manner [9],[14],[15].

I11. RESULTS AND DISCUSSIONS

Hardware setup real-time PPG and pre-recorded
PPG-ABP pairs from the BIDMC database were utilized in
order to assess the system. Filtered through a 4 Hz low-pass
filter, PPG signals produced better morphology with
well-resolved systolic peaks and more gradient-like diastolic
fall-off. Reconstruction of artery pressure waveform with
very close shape and time to the original ABP was possible
using the 1D Convolutional Neural Network (1D-CNN).

Cardiac output (CO) was estimated by sampling peak
systolic, pulse pressure computation, and area under curve
measurement per beat. Calculated values of CO fell within
physiological parameters of 4-8 L/min for patient samples
collected at various time points and for real-time
measurements. CO variations corresponded with changes in
heart rate and with alterations in morphology of the
waveform.

Quantitatively and graphically, backflow detection was
confirmed. Potentials showing a secondary peak in the
diastolic phase were noted as likely regurgitation. They
showed negative correlations with aortic and mitral valve
strength parameters. 662 beats in a single real-time session
showed potential backflow, and thus the clinical application
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of the model was acceptable. Valve strength analysis also
showed aortic valve to be more pointed and of larger upstroke
size, while mitral valve was more beat-to-beat varying.
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Correlation analysis also validated strong negative
correlation with valve strength vs. backflow volume, along
with heart rate with moderate negative correlation, pointing
towards near-failure or fatigue in high frequency.

Scatter plots and interpretation tables were employed to
plot the dose-response curve for the cardiac health indicators
against the physiological indicators. Results confirm the
ability of the system not only to produce CO values but also
to produce additional diagnostic data on valvular function
and integrity of blood passage.
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Fig. 5. Valve strength Analysis

Table I. Valve Strength vs Heart Metrics: Diagnostic Interpretation

Metric Corr. Coeff. Interpretation Potential Pathology
Aortic Strength vs HR 0.02 Aortic valve stable under varied HR. Normal
Mitral Strength vs HR -0.04 Weakening under high HR; early fatigue. | Risk of Mitral Valve Prolapse

Aortic Strength vs Backflow 0.14 More backflow as aortic valve weakens. | Possible Aortic In-sufficiency
Mitral Strength vs Backflow 0.23 Indicates mitral regurgitation risk. Mitral Regurgitation
Backflow vs HR 0.30 HR rise may compensate for backflow. Early Heart Failure / Stress

IV. CONCLUSION

This paper presents a completely non-invasive, machine
learning-based method for cardiac output estimation from
PPG signals through pulse contour analysis. Real-time
beat-to-beat cardiac output is enabled through the application
of a 1DCNN for arterial waveform reconstruction from
band-pass filtered PCG without invasive calibration. Clinical

usefulness is further augmented by backflow detection and
valve strength estimation for the identification of early
valvular dysfunction. Validated with publicly available
clinical data sets and realtime sensor data, the system holds
enormous potential for use in critical care, wearable health
monitoring, and remote health deployment. There are plans
to conduct clinical trials, multi-signal fusion (e.g., ECG +
PPG), and optimization on embedded real-time platforms.
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